激光雷达最突出的特点是在测量三维物体时也有较高空间分辨率。雷达可以检测到停在前方的汽车,但无法判断该车是停在前方还是侧方。在没有足够环境照明的情况下,摄像头也将变得毫无用处。
在 Velodyne 推出 VLS-128 之前,整体车载激光雷达市场上的趋势都是往低线束化、固态化发展,也就是往减少激光雷达线束发展,同时也从机械型转为固态型,因为这样做可以降低成本,但是需要用数量来弥补线数的不足,也体现出未来的技术路线未定,产业龙头 Velodyne LiDAR 也不能确定到底是多线束激光雷达还是多激光雷达耦合。
从以上对国外车载激光雷达技术现状的分析中能够得到的统一趋势有低成本化、固态化、量产化,但是 Velodyne LiDAR 推出更高线束的激光雷达和其他科技厂商推出低线束激光雷达的行为并不矛盾,他们的整体方向依然是要实现激光雷达的更高分辨率和精准度,进一步保证无人驾驶的安全性,只不过前者倾向于使用更强大的设备,后者倾向于使用多激光雷达耦合并降低成本。同时,低线束激光雷达对高线束激光雷达可以起到补充的作用。
但是摄像头同时具有三个缺点:缺点一是逆光或光影复杂的地方难以使用;缺点二在于依赖于算法,能否辨别物体完全依赖样本的训练,样本未覆盖的物体将无法辨别,比如 Mobileye 在中国道路上应用,识别超载运货车的成功率不超过 80%;缺点三在于摄像头对于行人的识别具有不稳定性,因为行人不同于车辆,动作、服装、身体各部分变化要素很多,而且还要与街上的建筑、汽车、树木等背景图案区分开来,比如 Mobileye 在日本、德国、美国、以色列等国市区的测试结果显示,行人的成功检测率为 93.5%,距离实现完全无人驾驶还有很大差距,再如穿着吉祥物套装或着装颜色与背景相似的人或搬运东西的人极有可能无法识别。因此,摄像头的物体识别功能无可比拟,但由于依赖样本识别物体,以及识别行人具有不稳定性,摄像头应用于测距领域无法保障 100% 的稳定性,在自动驾驶领域脱离激光雷达使用只能应用于 ADAS 而不能应用于完全的无人驾驶。
本网信息来自于互联网,目的在于传递更多信息,并不代表本网赞同其观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,并请自行核实相关内容。本站不承担此类作品侵权行为的直接责任及连带责任。如若本网有任何内容侵犯您的权益,请及时联系我们,本站将会在24小时内处理完毕,E-mail:xinmeigg88@163.com
本文链接:http://www.xrbh.cn/tnews/4981.html