
AI实战-营销活动和数据集分析预测实例(含19个源代码+523.50 KB完整的数据集)
代码手工整理,无语法错误,可运行。
包括:19个代码,共231.67 KB;数据大小:2个文件共523.50 KB。
使用到的模块:
pandas
numpy
seaborn
matplotlib
matplotlib.pyplot
warnings
sklearn.model_selection.train_test_split
sklearn.ensemble.RandomForestClassifier
sklearn.metrics.accuracy_score
sklearn.metrics.confusion_matrix
scipy.stats
pingo
uin
datetime.date
matplotlib.ticker.PercentFormatter
scipy.stats.f_oneway
scipy.stats.friedmanchisquare
sklearn.linear_model.LogisticRegression
sklearn.metrics.precision_score
sklearn.metrics.recall_score
sklearn.metrics.f1_score
sklearn.metrics.classification_report
sklearn.metrics.roc_curve
sklearn.metrics.roc_auc_score
sklearn.svm
sklearn.cluster.KMeans
sklearn.preprocessing.StandardScaler
sklearn.decomposition.PCA
sklearn.metrics.silhouette_score
sklearn.metrics.davies_bouldin_score
sklearn.preprocessing.MinMaxScaler
IPython.display.display
sklearn.preprocessing.OneHotEncoder
sklearn.model_selection.GridSearchCV
sklearn.tree.DecisionTreeClassifier
sklearn.tree.plot_tree
sklearn.ensemble.GradientBoostingClassifier
sklearn.metrics.RocCurveDisplay
imblearn.over_sampling.SMOTE
imblearn.pipeline.Pipeline
sklearn.model_selection.RandomizedSearchCV
sklearn.model_selection.StratifiedKFold
sklearn.feature_selection.RFE
sklearn.utils.class_weight
sklearn.feature_selection.RFECV
plotly.express
datetime
xgboost.XGBClassifier
xgboost.plot_importance
os
sklearn.preprocessing.LabelEncoder
kneed.KneeLocator
sklearn.linear_model.LinearRegression
sklearn.metrics.mean_squared_error
sklearn.metrics.r2_score
lightgbm.LGBMRegressor
tensorflow
sklearn.base.BaseEstimator
sklearn.base.TransformerMixin
sklearn.model_selection.cross_val_score
sklearn.metrics.precision_recall_fscore_support
xgboost
datetime.datetime
sklearn.metrics.ConfusionMatrixDisplay
sklearn.tree.export_text
missingno
plotly.offline.init_notebook_mode