当前位置:首页 > 资讯 > 正文

Python数据分析 之 制作酷炫的可视化大屏,特简单,2024年最新牛逼

Python数据分析 之 制作酷炫的可视化大屏,特简单,2024年最新牛逼

def get_df():

“”“获取当日最新的文章数据”“”

df = pd.read_sql(today, con=engine)

df[‘date_day’] = df[‘date’].apply(lambda x: x.split(’ ')[0]).astype(‘datetime64[ns]’)

df[‘date_month’] = df[‘date’].apply(lambda x: x[:7].split(‘-’)[0] + “年” + x[:7].split(‘-’)[-1] + “月”)

df[‘weekday’] = df[‘date_day’].dt.weekday

df[‘year’] = df[‘date_day’].dt.year

df[‘month’] = df[‘date_day’].dt.month

df[‘week’] = df[‘date_day’].dt.isocalendar().week

return df

head = html.Div([

html.Div(html.Img(src=‘https://blog.csdn.net/2401_84182271/article/details/assets/img.jpg’, height=“100%”), style={“float”: “left”, “height”: “90%”, “margin-top”: “5px”, “border-radius”: “50%”, “overflow”: “hidden”}),

html.Span(“{}博客的Dashboard”.format(info[‘author_name’][0]), className=‘app-title’),

], className=“row header”)

columns = info.columns[3:]

col_name = [‘文章数’, ‘关注数’, ‘喜欢数’, ‘评论数’, ‘等级’, ‘访问数’, ‘积分’, ‘排名’]

row1 = html.Div([

indicator(col_name[i], col) for i, col in enumerate(columns)

], className=‘row’)

row2 = html.Div([

html.Div([

html.P(“每月文章写作情况”),

dcc.Graph(id=“bar”, style={“height”: “90%”, “width”: “98%”}, config=dict(displayModeBar=False),)

], className=“col-4 chart_div”,),

html.Div([

html.P(“各类型文章占比情况”),

dcc.Graph(id=“pie”, style={“height”: “90%”, “width”: “98%”}, config=dict(displayModeBar=False),)

], className=“col-4 chart_div”),

html.Div([

html.P(“各类型文章阅读情况”),

dcc.Graph(id=“mix”, style={“height”: “90%”, “width”: “98%”}, config=dict(displayModeBar=False),)

], className=“col-4 chart_div”,)

], className=‘row’)

years = get_df()[‘year’].unique()

select_list = [‘每月文章’, ‘类型占比’, ‘类型阅读量’, ‘每日情况’]

dropDowm1 = html.Div([

html.Div([

dcc.Dropdown(id=‘dropdown1’,

options=[{‘label’: ‘{}年’.format(year), ‘value’: year} for year in years],

value=years[1], style={‘width’: ‘40%’})

], className=‘col-6’, style={‘padding’: ‘2px’, ‘margin’: ‘0px 5px 0px’}),

html.Div([

dcc.Dropdown(id=‘dropdown2’,

options=[{‘label’: select_list[i], ‘value’: item} for i, item in enumerate([‘bar’, ‘pie’, ‘mix’, ‘heatmap’])],

value=‘heatmap’, style={‘width’: ‘40%’})

], className=‘col-6’, style={‘padding’: ‘2px’, ‘margin’: ‘0px 5px 0px’})

], className=‘row’)

row3 = html.Div([

html.Div([

html.P(“每日写作情况”),

dcc.Graph(id=“heatmap”, style={“height”: “90%”, “width”: “98%”}, config=dict(displayModeBar=False),)

], className=“col-6 chart_div”,),

html.Div([

html.P(“文章列表”),

html.Div(get_news_table(get_df()), id=‘click-data’),

], className=“col-6 chart_div”, style={“overflowY”: “scroll”})

], className=‘row’)

app.layout = html.Div([

dcc.Interval(id=“stream”, interval=1000*60, n_intervals=0),

dcc.Interval(id=“river”, interval=10006060, n_intervals=0),

html.Div(id=“load_info”, style={“display”: “none”},),

html.Div(id=“load_click_data”, style={“display”: “none”},),

head,

html.Div([

row1,

row2,

dropDowm1,

row3,

], style={‘margin’: ‘0% 30px’}),

])

上面的代码,就是网页的布局,效果如下。

网页可以划分为三列。第一列为info表中的数据展示,第二、三列为博客文章的数据展示。

相关的数据需要通过回调函数进行更新,这样才能做到实时刷新。

各个数值及图表的回调函数代码如下所示。

@app.callback(Output(‘load_info’, ‘children’), [Input(“stream”, “n_intervals”)])

def load_info(n):

try:

df = pd.read_sql(‘info’, con=engine)

return df.to_json()

except:

pass

@app.callback(Output(‘load_click_data’, ‘children’), [Input(“river”, “n_intervals”)])

def cwarl_data(n):

if n != 0:

df_article = get_blog()

df_article.to_sql(today, con=engine, if_exists=‘replace’, index=True)

@app.callback(Output(‘bar’, ‘figure’), [Input(“river”, “n_intervals”)])

def get_bar(n):

df = get_df()

df_date_month = pd.DataFrame(df[‘date_month’].value_counts(sort=False))

df_date_month.sort_index(inplace=True)

trace = go.Bar(

x=df_date_month.index,

y=df_date_month[‘date_month’],

text=df_date_month[‘date_month’],

textposition=‘auto’,

marker=dict(color=‘#33ffe6’)

)

layout = go.Layout(

margin=dict(l=40, r=40, t=10, b=50),

yaxis=dict(gridcolor=‘#e2e2e2’),

paper_bgcolor=‘rgba(0,0,0,0)’,

plot_bgcolor=‘rgba(0,0,0,0)’,

)

return go.Figure(data=[trace], layout=layout)

@app.callback(Output(‘pie’, ‘figure’), [Input(“river”, “n_intervals”)])

def get_pie(n):

df = get_df()

df_types = pd.DataFrame(df[‘type’].value_counts(sort=False))

trace = go.Pie(

labels=df_types.index,

values=df_types[‘type’],

marker=dict(colors=color_scale[:len(df_types.index)])

)

layout = go.Layout(

margin=dict(l=50, r=50, t=50, b=50),

paper_bgcolor=‘rgba(0,0,0,0)’,

plot_bgcolor=‘rgba(0,0,0,0)’,

)

return go.Figure(data=[trace], layout=layout)

@app.callback(Output(‘heatmap’, ‘figure’),

[Input(“dropdown1”, “value”), Input(‘river’, ‘n_intervals’)])

def get_heatmap(value, n):

df = get_df()

grouped_by_year = df.groupby(‘year’)

data = grouped_by_year.get_group(value)

cross = pd.crosstab(data[‘weekday’], data[‘week’])

cross.sort_index(inplace=True)

trace = go.Heatmap(

x=[‘第{}周’.format(i) for i in cross.columns],

y=[“星期{}”.format(i+1) if i != 6 else “星期日” for i in cross.index],

z=cross.values,

colorscale=“Blues”,

reversescale=False,

xgap=4,

ygap=5,

showscale=False

)

layout = go.Layout(

margin=dict(l=50, r=40, t=30, b=50),

)

return go.Figure(data=[trace], layout=layout)

@app.callback(Output(‘mix’, ‘figure’), [Input(“river”, “n_intervals”)])

def get_mix(n):

df = get_df()

df_type_visit_sum = pd.DataFrame(df[‘read_num’].groupby(df[‘type’]).sum())

df[‘read_num’] = df[‘read_num’].astype(‘float’)

df_type_visit_mean = pd.DataFrame(df[‘read_num’].groupby(df[‘type’]).agg(‘mean’).round(2))

trace1 = go.Bar(

x=df_type_visit_sum.index,

y=df_type_visit_sum[‘read_num’],

name=‘总阅读’,

marker=dict(color=‘#ffc97b’),

yaxis=‘y’,

)

trace2 = go.Scatter(

x=df_type_visit_mean.index,

y=df_type_visit_mean[‘read_num’],

name=‘平均阅读’,

yaxis=‘y2’,

line=dict(color=‘#161D33’)

)

layout = go.Layout(

margin=dict(l=60, r=60, t=30, b=50),

showlegend=False,

yaxis=dict(

side=‘left’,

title=‘阅读总数’,

gridcolor=‘#e2e2e2’

),

yaxis2=dict(

showgrid=False, # 网格

title=‘阅读平均’,

anchor=‘x’,

overlaying=‘y’,

side=‘right’

),

paper_bgcolor=‘rgba(0,0,0,0)’,

plot_bgcolor=‘rgba(0,0,0,0)’,

)

return go.Figure(data=[trace1, trace2], layout=layout)

@app.callback(Output(‘click-data’, ‘children’),

[Input(‘pie’, ‘clickData’),

Input(‘bar’, ‘clickData’),

Input(‘mix’, ‘clickData’),

Input(‘heatmap’, ‘clickData’),

Input(‘dropdown1’, ‘value’),

Input(‘dropdown2’, ‘value’),

])

def display_click_data(pie, bar, mix, heatmap, d_value, fig_type):

try:

df = get_df()

if fig_type == ‘pie’:

type_value = pie[‘points’][0][‘label’]

data = df[df[‘type’] == type_value]

elif fig_type == ‘bar’:

date_month_value = bar[‘points’][0][‘x’]

data = df[df[‘date_month’] == date_month_value]

elif fig_type == ‘mix’:

type_value = mix[‘points’][0][‘x’]

data = df[df[‘type’] == type_value]

else:

z = heatmap[‘points’][0][‘z’]

if z == 0:

return None

else:

week = heatmap[‘points’][0][‘x’][1:-1]

weekday = heatmap[‘points’][0][‘y’][-1]

if weekday == ‘日’:

weekday = 7

year = d_value

data = df[(df[‘weekday’] == int(weekday)-1) & (df[‘week’] == int(week)) & (df[‘year’] == year)]

return get_news_table(data)

except:

return None

def update_info(col):

def get_data(json, n):

df = pd.read_json(json)

return df[col][0]

return get_data

for col in columns:

app.callback(Output(col, “children”),

[Input(‘load_info’, ‘children’), Input(“stream”, “n_intervals”)]

)(update_info(col))

图表的数据和样式全在这里设置,两个下拉栏的数据交互也在这里完成。

需要注意右侧下拉栏的类型,需和你所要点击图表类型一致,这样文章列表才会更新。

每日情况对应热力图,类型阅读量对应第二列第三个图表,类型占比对应饼图,每月文章对应第一个柱状图的点击事件。

最后启动程序代码。

if name == ‘main’:

app.run_server(debug=True, threaded=True, port=7777)

这样就能在本地看到可视化大屏页面,浏览器打开如下地址。

http://127.0.0.1:7777

对于网页的布局、背景颜色等,主要通过CSS进行设置。

这一部分可能是大家所要花费时间去理解的。

body{

margin:0;

padding: 0;

background-color: #161D33;

font-family: ‘Open Sans’, sans-serif;

color: #506784;

-webkit-user-select: none; /* Chrome all / Safari all */

-moz-user-select: none; /* Firefox all */

-ms-user-select: none; /* IE 10+ */

user-select: none; /* Likely future */

}

.modal {

display: block; /*Hidden by default */

position: fixed; /* Stay in place */

z-index: 1000; /* Sit on top */

left: 0;

top: 0;

width: 100%; /* Full width */

height: 100%; /* Full height */

overflow: auto; /* Enable scroll if needed */

background-color: rgb(0,0,0); /* Fallback color */

background-color: rgba(0,0,0,0.4); /* Black w/ opacity */

}

.modal-content {

background-color: white;

margin: 5% auto; /* 15% from the top and centered */

padding: 20px;

width: 30%; /* Could be more or less, depending on screen size */

color:#506784;

}

._dash-undo-redo {

display: none;

}

.app-title{

color:white;

font-size:3rem;

letter-spacing:-.1rem;

padding:10px;

vertical-align:middle

}

.header{

margin:0px;

background-color:#161D33;

height:70px;

color:white;

padding-right:2%;

padding-left:2%

}

.indicator{

border-radius: 5px;

background-color: #f9f9f9;

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!**

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
[外链图片转存中…(img-YJICeZu8-1712706716720)]

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)